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• Diffusion, diffusion-driven 
processes


• Shape of polymers


• Diffusion of polymers, 
reptation. 



THERMODYNAMIC CURRENTS

Thermodynamic 
current

Relevant intensive 
variable (its 

difference maintains 
current)

Current density Physical law

Heat flow Temperature (T) Fourier

Volumetric flow Pressure (p) Hagen-
Poiseuille

Electric current Electric potential (φ) Ohm

Material transport 
(diffusion) Chemical potential (µ) Fick

• Natural processes are rarely reversible.
• If there are inequalities in the intensive variables at different locations within the system, 

thermodynamic currents arise.
• Thermodnamic currents (irreversible processes) aim at the restoration of equilibrium.
• Irreversible processes are described by irreversible thermodynamics. 

JE = −λ
ΔT
Δx

JV = −
R2

8η
Δp
Δx

JQ = −
1
ρ
Δϕ
Δx

Jn = −D
Δc
Δx

p1, µ1, φ1, T1

p2, µ2, φ2, T2
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MATERIAL TRANSPORT (DIFFUSION)

m	 = amount of material transported

t	 = time

R	 = tube radius

x	 = tube length

(Δc/Δx = concentration gradient, maintained by c1-c2)

A	 = cross-sectional area of tube

Jn	 = material transport current density

D	 = diffusion coefficient

R

x

c1 solution c2

m
tA

= Jn = −D
Δc
Δx

Thermodynamic 
current

Relevant intensive 
variable (its gradient 

drives current)
Current density Law

Material transport 
(diffusion) Chemical potential (µ) FickJn = −D

Δc
Δx



DIFFUSION
• Spontaneous mixing, distribution concentration-

equilibration of particles driven by thermal motion.

x2 = 2Dt
x = displacement of boundary (in reality, it is the 
smearing of the boundary)

t = time

D = constant (diffusion coefficient)

water

dye

start end (after a few days)

up down



Microscopic manifestation of 
diffusion: Brownian motion

Lipid droplets suspended in milk 
(droplet size 0.5 - 3 µm)

Robert Brown
(1773-1858)



Brownian-motion

l

l = mean free path (average 
distance between consecutive 
collisions) 


v = average velocity of the 
thermally propelled particle

Random motion of the microscopic 
(Brownian) particle is the result of 

stochastic collisions with molecules.

Random walk



l

Brownian motion

DIFFUSION
• Fick’s I. law: material flow density is the product of the 

evoking concentration gradient and the diffusion coefficient.

Jn = material flow density

Δc/Δx = drop in concetration (gradient)

D = constant (diffusion coefficient)

Jn = −D
Δc
Δx

D =
1
3
vl

v = average velocity of thermally 
propelled particle

l = mean free path (average distance 
between consecutive collisions)

D = amount of material transported 
across unit cross-sectional area per 
unit time (m2/s) (at unit 
concentration drop).

Diffusion coefficient:

Material flow 
density (material 

transport):

D =
kBT
6πηr

Diffusion coefficient 
for spherical particle:

Einstein-Stokes equation:

kB = Boltzmann’s constant

T = absolute temperature 

η = viscosity

r = radius of particle



DIFFUSION
• Fick’s II. law: instantaneous material flow density depends on 

the temporal change of the evoking concentration gradient. 

Jn = flow density

x = distance

t = time

D = diffusion coefficient.Diffusion coefficient:

Material flow:

Concentration gradient decreases with 
time (boundary becomes smeared)

−
ΔJn
Δx
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Δc
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Power (square) relationship: slope = 2

Diffusion provides rapid transport 
only on a short length scale



Diffusion provides rapid transport 
only on a short length scale



Biopolymers (biological 
polymers)

Polymers:
chains built up from monomers

Number of monomers: N>>1; 
Typically, N~102-104, 
but, in DNA, e.g.: N~109-1010

Biopolymer Monomer Bond

Protein Amino acid Covalent 
(peptide bond)

Nucleic acid
(RNA, DNA)

Nucleotide 
(CTUGA)

Covalent 
(phosphodiester)

Polysaccharide
(e.g., glycogen)

Sugar
(e.g., glucose)

Covalent
(e.g., α-glycosidic)

Protein polymer
(e.g., microtubule)

Protein
(e.g., tubulin) Secondary



Shape of the polymer chain 
resembles random walk

dsDNA molecule

1D random walk 3D random walk



Shape of the polymer chain 
resembles random walk

R

r1

rN

� 

R2 = Nl2 = Ll

“Square-root law”:Brownian-movement - 
“random walk”

R = end-to-end distance
N = number of elementary vectors
              correlation length
ri = elementary vector
Nl = L = contour length
l is related to bending rigidity.

 l =
!ri =

In case of Brownian-movement R = displacement, N = number of 
elementary steps, L = total path length, and l = mean free path length. 

v = l
τ

t = Nτ D =
1
3
vl

R = Nl2 = t
τ
l2 = tvl = 3Dt

Average particle 
velocity:

Total diffusion 
time:

Diffusion 
coefficient:



Shape and shape change of a 
random polymer chain

R

r1

rN

€ 

R2 = Nl2 = Ll
Square-root law:

Brownian motion 
(random walk)

Entropic elasticity:

Upon thermal excitation, the polymer chain goes 

through random fluctuations, shape changes.


Conformational entropy of the chain (orientational 
entropy of the elementary vectors) increases.


The polymer chain contracts.

The tendency of maximizing the orientational 
disorder (entropy) of elementary vectors leads 

to elastic behavior

elementary vector:



Equilibrium shape of a random 
polymer

The macrostate which can be realized by the largest number 
of microstates (the most probable state)

AFM image of surface-adsorbed 
dsDNA molecules (identical 

contour length, PCR product)

500 nm

Spatial distribution of microstates

Temporal distribution of microstates



Wormlike chain polymer model
 
WLC (wormlike chain): 
 
 
 
if s is large enough, then                  decays as a function of s: 	  
lp=persistence length 
If s<<lp, then                ~1, and θ(s) fluctuates around 0. 

If s>>lp, then                ~0, 

that is, θ(s) may be between 0˚ and 360˚ with equal probabilities.

Meaning  of persistence length: 

statstical distance across which the chain retains its orientation (remembers it). 
I.e., the orientation “persists”.

Beyond the persistence length the chain forgets its orientation.
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cosθ s( )
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cosθ s( ) = exp − s
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cosθ s( )

θ(s)

s

EI = flexural ridity (E = Young’s modulus - material dependent, I = second moment of 
cross section - shape dependent); kBT = thermal energy


Meaning: the more rigid the chain, the greater the distance (lp) beyond which the thermal 
fluctuations become detectable.



Lp >> Lc

Rigid chain

Lp ≈ Lc

Semiflexible 
chain

Lp << Lc

Flexible chain

Lp = persistence length
Lc = contour length

Microtubule

Microfilament (actin)

dsDNA

actin

tubulin

dividing cell

MT

dsDNA

viral capsid

Relationship between the shape and 
elasticity of the polymer chain

(mm >> 10 µm)

(µm ≈ µm)

(50 nm << cm)



Visualization of a random 
(entropic) chain

Kinosita Group

  Phase contrast image            Fluorescence image

Tying a knot on a single dsDNA molecule



Visualization of a random 
(entropic) chain

Extending dsDNA with drag force (fluid flow)

dsDNA 
molecules 

ejected from T7 
bacteriophages 

and labeled, 
instantaneously, 

with sytox 
orange



Physical size of the human genome
Simplified cell 
model: cube

Cell:
20 µm edge cube

Analog -
Lecture hall:
20 m edge cube

DNA thickness 2 nm 2 mm

Full length of human  
DNA ~2 m

~2000 km (!!!)
(Perimeter of Hungary: 

~2200 km)

Persistence length of 
dsDNA (LP) ~50 nm ~50 cm

Mean end-to-end length 
~350 µm (!) ~350 m (!)

Radius of gyration (RG)
130 µm 130 m

Volume of fully 
compacted DNA ~2 x 2 x 2 µm3 ~2 x 2 x 2 m3 

(= 8 m3)

Solution: DNA needs 
to be packed!

Chromosome condensation

Nucleosome: histone protein 
complex (octamer) + DNA 

wound ~1.6 times

• Condensins play a role in high-order DNA packaging
• DNA chain: complex linear path with roadblocks!

20 µm 
(20 m)



SPECIAL CASE OF DIFFUSION: REPTATION

• Reptation: “snakelike”diffusional motion within  polymer network (“Reptilia”)

Polymer matrix: 
“entanglement” 

Actin fi


Unidirectionalized diffusion

τr = Reptation time: time required 
for traveling a distance equivalent 
to one contour length;

L = contour length; N = number of 
elementary segments; µ = chain 
mobility; kT = thermal energy

Dr = Reptation diffusion coefficient;

N = number of elementary segments; a = 
length of elementary segment 
(~persistence length); τr = reptation time.

N.B.: numerator is analogous to the mean-
square-displacement.

τ r =
L2 ⋅N
µ ⋅ k ⋅T Dr =

a ⋅ N( )2
τ r

Indiana Jones and 
Raiders of the Lost Ark

Filament inside 
the reptational 

channel


