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How to Get Prepared?
• university = 

autonomous learning
• sources:

– your notes made in the 
lectures (Monday 1930–
2050; Friday 1610–1730; EOK  
"Szent-Györgyi Albert” 
lecture hall; only in the first 
four weeks)

– Tölgyesi: Mathematical and 
Physical Basis of Medical 
Biophysics (2016)

– homepage: 
biofiz.semmelweis.hu
• subject requirements
• lecture schedule and slides
• textbook
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How to Get Prepared?
• university = 

autonomous learning
• sources:

– your notes made in the 
lectures; only in the first 
four weeks

– Tölgyesi: Mathematical and 
Physical Basis of Medical 
Biophysics (2016)

– on-line material: 
https://itc.semmelweis.hu/
moodle/course/view.php?i
d=313
• subject requirements
• lecture schedule and slides
• textbook

5 6

How to Use Scientific Notation?

best calculator for 
a medical student

still okay
(but less convenient) not allowed

natural display linear input
programmable

graphical display

7

Use of Symbols in Science

BEWARE!

In science we use a large number of Latin and Greek letters (and their combinations) 
as symbols, so it is inevitable to learn the Greek alphabet. 

However, the number of quantities and units is much greater than the number 
of available letters, and this can lead to confusion. Your help: CONTEXT

c  and  C
capacitance

and

capacitor

coulombconcentration 
(many different kinds)

speed of light

speed of so
und

a general 
constant

specific heat capacity ca
rbon

Ce
lsi

us density

speed

frequency

inconsistency!
for example:

f
ν [nu]

v
c

ρ [rho]
d

ambiguity!
for example:

centi-

multiplication
×

*
·

proportionality ∝
~

Angles

8

revolution: one turn
degree: practical, traditional unit
radian: scientific unit, arc/radius

1 revolution = 360° = 2π rad

1° = 60ʹ = 3600ʺ 

one revolution
360° degrees

2π radians

half revolution
180° degrees

π radian

quarter revolution
90° degrees
π/2 radian

1/8 revolution
45° degrees
π/4 radian

– shift
– setup
– 3 (for degrees)
– 4 (for radians)D: 

degrees 
mode

R: 
radians 

mode
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INPUT (ARGUMENT,
INDEPENDENT VARIABLE)

x

What is a Function?
Unambiguous assignment of one set of values to an other set of values

function
as a

“machine”

-1 2
3

4
5

1 4
9

16
25

1

0
-1 2 3

4
5

1

0

0
1 4 9

16
250

OUTPUT (VALUE,
DEPENDENT VARIABLE)

f(x) or y

DOMAIN

IMAGE (RANGE)

x –1 0 1 2 3 4 5
f(x
)

1 0 1 4 9 16 25

x↦ f(x)   or   y = f(x)
f is the function defining 
the relationship between 

x and f(x)
9

x↦ f(x)   or   y = f(x)

Trigonometric Functions

10

for small angles (<10° ≈ 0.2 rad):
sin(α) ≈ α [rad] ≈ tan(α)

α

sine: sin(α) = a/c
cosine: cos(α) = b/c
tangent: tan(α) = tg(α) = a/b

b

a

c

adjacent cathetus

op
po

sit
e 

ca
th

et
us

hypotenuse

degree: practical, traditional unit
radian: scientific unit, arc/radius
1 revolution = 360° = 2π rad

Linear Function

y = a · x + b

dependent
variable

independent
variable

slope 
(gradient, 

increment)

VARIABLES:

PARAMETERS:

y = 0.5x + 3

-10

-5

0

5

10

-10 -5 0 5 10

Δy ∝ Δx

y-axis
intercept

The change of the dependent variable is 
proportional to the change of the 

independent variable

INTEGRAL FORM

“DIFFERENTIAL” FORM

if x = 0
then y = b

if Δx = 1
then Δy = a

a = Δy/Δx = tanα

Δy

Δx
α

y

x

11

explicit for y:       y = a · x + b
explicit for x:    x = (y – b) / a

Linear Function: Some Examples
from the Biophysics Formula Collection

y = a · x + b

12

#1: The ideal gas law
(I.35)

pV = nRT (if n & V are constant)
p = nR/V · T + 0

y = a · x + b

#2: Photoelectric effect
(II.37)

Ekin= hf–Wem
Ekin = · f + (–Wem)

y = a · x + b

#3: Attenuation coefficient
(II.85)
μ = μm·ρ

μ = μm · ρ + 0

y = a · x + b

#4: Ohm’s law

R = U/I
I = 1/R · U + 0
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Exponential Function: Example #1
time 
elapsed 
(min)

no. of 
bacteria

0 1
20 2
40 2·2=22=4
60 4·2=23=8
80 24=16
100 25=32
120 26=64
… …

+20
+20
+20
+20

+20

+20

×2

×2
×2

×2
×2
×2

n = 2t/20min
time
(min)

number of 
bacteria

13
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Exponential Function: Example #2
time 
elapsed 
(yrs)

debt in €
(yearly interest rate: 
20%)

0 1000 (capital)
1 1000 · 120% = 1200
2 1000 · 120%2 = 1440
3 1000 · 120%3 = 1728
4 1000 · 120%4 = 2074
5 1000 · 120%5 = 2488
6 1000 · 120%6 = 2986
… …

+1
+1
+1

+1

+1

+1

×1.2

×1.2
×1.2

×1.2

×1.2

×1.2

debt = 1000€ · 1.2t/1yr
time
(yrs)

debt
(€)

14
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Exponential Function: Example #3
time 
elapsed 
(yrs)

Cs-137 (in PBq)
from Chernobyl
(half life: 30 yrs)

0 85 (total fallout)

30 85 / 2 = 85 · 2–1 = 42.5

60 85 / 22 = 85 · 2–2 = 21.3

90 85 / 23 = 85 · 2–3 = 10.6

120 85 / 24 = 85 · 2–4 = 5.3

150 85 / 25 = 85 · 2–5 = 2.7

180 85 / 26 = 85 · 2–6 = 1.3

… …

+30

+30

+30

+30

+30

+30

×1/2

×1/2

×1/2

×1/2

×1/2

×1/2

radioactivity = 85 PBq · 2–t/30yr
time

(yrs)

radio-

activit

y

(PBq)

15

Exponential Function

y = b · ax

• the base number is preferred to be e
• a new factor parameter p (or 1/k) is 

necessary in the exponent
• use a negative sign in the exponent
• b is rather denoted by y0

pre-
exponential 
coefficient

PRACTICAL MODIFICATIONS:

PARAMETERS:

y = y0 · e–px = y0 · e–x/k

dependent
variable

independent
variableVARIABLES:

exponential 
coefficient

y = 5e-0.25x

-10

-5

0

5

10

-10 -5 0 5 10

if x = 0
then y = y0

if y = y0/e
then x = 1/p = kINTEGRAL FORM

y

x
y0/e

1/p

Δy/y ∝ Δx
The relative change of the dependent 

variable is proportional to the change of the 
independent variable

“DIFFERENTIAL” FORM

16

explicit for y:                 y = y0 · e–px

explicit for x:    x = ln(y / y0) / (–p)
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y = -0.1086x + 0.699
-1

-0.5

0

0.5

1

-10 -5 0 5 10

Exponential Function: Linearization

y = y0 · e–px
INTEGRAL FORM

arithmetical linearization
plot log(y) as a function of x:

the relationship is linear

intercept = log(y0)
log(5) = 0.699

slope = – p·log(e)
–0.25·log(e) = –0.1086

logy

x

graphical linearization
plot y on a log scale as a function of x:

the relationship looks linear but it is still exponential

y = 5e-0.25x

0.1

1

10

-10 -5 0 5 10

y

x

17

Exponential Function: Some Examples
from the Biophysics Formula Collection

18

#1: Law of radiation attenuation
(II.11)

J = J0 · e–µx

#2: Boltzmann’s distribution
(I.25)

ni = n0 e–Δε/(kT)

#3: Decay law
(II.96)

N = N0 e–λt

#4: Discharging an RC circuit
(VII.2)

U = U0 e–t/(RC)

Exponential Function: Some Examples
from the Biophysics Formula Collection

y = y0 · e–px

19

#1: Law of radiation attenuation
(II.11)

J = J0 · e–µx

y = y0 · e–x/k

#2: Boltzmann’s distribution
(I.25)

ni = n0 e–Δε/(kT)

y = y0 · e–px

#3: Decay law
(II.96)

N = N0 e–λt

y = y0 · e–x/k

#4: Discharging an RC circuit
(VII.2)

U = U0 e–t/(RC)

y

y0

x1/p

y = y0·e–px (general equation)

Λ = Λ0·e–t/τ (radioactive decay law)

J = J0·e–μx (law of radiation attenuation)

1/μ

J0

J

x

y0/e

J0/e

p = p0·e–Mgh/RT (barometric formula)

p

p0

p0/e

h

RT/Mg

Λ

Λ0

τ

Λ0/e

t

U = U0·e–t/RC (discharge of an RC circuit)

U

U0

t

U0/e

RC

Graph of Exponential Functions
from the Biophysics Formula Collection
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Power Function: Example
mass ∝ volume ∝ [body]length3

surface area ∝ [body]length2

21

y = x2

0

5

10

15

20

0 5 10 15 20

Power Function

pre-
exponential 
coefficient

PARAMETERS:

y = b · xa

dependent
variable

independent
variableVARIABLES:

exponent

if x = 1
then y = b

INTEGRAL FORM

y

x
Δy/y ∝ Δx/x

The relative change of the dependent 
variable is proportional to the relative 

change of the independent variable

“DIFFERENTIAL” FORM

inverse proportionality 
and square root 

functions are also power 
functions 22

explicit for y:        y = b · xa

explicit for x:  x = (y / b)1/a

y = x2

1

10

100

1 10 100

y = 2x

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Power Function: Linearization

arithmetical linearization
plot log(y) as a function of log(x):

the relationship is linear

intercept = logb
log1 = 0
slope = a

a = 2

logy

logx

graphical linearization
plot both y and x on log scales:

the relationship looks linear but it is still power function

y

x

y = b · xa
INTEGRAL FORM

23

Power Function: Example
Allometric scaling
(E.g. Kleiber‘s law)

hourly heat production ∝ body mass3/4

mass ∝ volume ∝ [body]length3

surface area ∝ [body]length2

24
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Power Function: Some Examples
from the Biophysics Formula Collection

25

#1: The de Broglie wavelength
(I.3)
λ = h/p

λ = h · p–1

#2: Stefan–Boltzmann law
(II.41)

Mblack = σ T4

#3: Duane–Hunt law
(II.80)

λmin = hc/e U–1

#4: Mass dependence of 
eigenfrequency
(Resonance 6)

f0 = k1/2/(2π) · m–1/2

λmin =
hc

eUanode
f0 =

1
2π

k
m

Power Function: Some Examples
from the Biophysics Formula Collection

y = b · xa

26

#1: The de Broglie wavelength
(I.3)
λ = h/p

λ = h · p–1

y = b · xa

#2: Stefan–Boltzmann law
(II.41)

Mblack = σ T4

y = b · xa

#3: Duane–Hunt law
(II.80)

λmin = hc/e U–1

y = b · xa

#4: Mass dependence of 
eigenfrequency
(Resonance 6)

f0 = k1/2/(2π) · m–1/2

λmin =
hc

eUanode
f0 =

1
2π

k
m

Logarithmic Function: Example

concert
pitch
“A”

+12  
semitones

×2
frequency

y = 2log10(x)

-10

-5

0

5

10

0 5 10 15 20

Logarithmic Function

y = b·loga(x)

• base is 10 (sometimes e or 2)
• if the base is fixed this will modify the 

factor paramater according to the 
following identity:
b·loga(x)=b/log10(a) ·log10(x)=b’ · log10(x) 

factor
parameter

PRACTICAL CONSIDERATIONS:

PARAMETERS:

y = b’ · log10(x)

dependent
variable

independent
variableVARIABLES:

if x = 10
then y = b’INTEGRAL FORM

y

x
b’

Δy ~ Δx/x
The absolute change of the dependent 
variable is proportional to the relative 

change of the independent variable

„DIFFERENTIAL” FORM
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y = 2x

0

1

2

3

4

0 0.5 1 1.5 2

y = 2log10(x)

0

1

2

3

4

1 10 100

Logarithmic Function: Linearization

y = b’ · log10(x)
INTEGRAL FORM

arithmetical linearization
plot y as a function of log(x):

the relationship is linear

y

x

graphical linearization
plot y on lin and x on log scales:

the relationship looks linear but it is still a log function
y

log(x)

Logarithmic Function: Some Examples
from the Biophysics Formula Collection …and elsewhere

30

#1: The statistical definition of entropy
(III.72)

S = k ln Ω
S = k · loge(Ω)

#2: The decibel (dB) scale
(VII.10)

n = 10 log Ap

n = 10 · log10(Ap)

#3: The definition of absorbance
(VI.34)

A = lg(J0/J)
A = 1 · log10(J0/J)

#4: The pH scale

pH = –log[H+]
pH = –1 · log10([H+]/(1 M))

Logarithmic Function: Some Examples
from the Biophysics Formula Collection …and elsewhere

y = b · loga(x)

31

#1: The statistical definition of entropy
(III.72)

S = k ln Ω
S = k · loge(Ω)

y = b · loga(x)

#2: The decibel (dB) scale
(VII.10)

n = 10 log Ap

n = 10 · log10(Ap)

y = b · loga(x)

#3: The definition of absorbance
(VI.34)

A = lg(J0/J)
A = 1 · log10(J0/J)

y = b · loga(x)

#4: The pH scale

pH = –log[H+]
pH = –1 · log10([H+]/(1 M))

Functions
Summary

Δy ~ Δx
LINEAR FUNCTION

Δy/y ~ Δx
EXPONENTIAL FUNCTION

Δy/y ~ Δx/x
POWER FUNCTION

Δy ~ Δx/x
LOGARITHMIC FUNCTION

Linearization

y vs. x logy vs. x

y vs. logx logy vs. logx

The change of the dependent variable is 
proportional to the change of the 

independent variable

The relative change of the dependent 
variable is proportional to the change of the 

independent variable

The relative change of the dependent 
variable is proportional to the relative 

change of the independent variable

The absolute change of the dependent 
variable is proportional to the relative 

change of the independent variable
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Derivative and Integral: Application
Rectilinear Motion

33

s

t

Δs
/Δ

t =
 v

t

Δv
/Δ

t =
 a

t

s

t

Δs
/Δ

t =
 v

t

Δv
/Δ

t =
 a

t

uniform rectilinear motion:

uniform rectilinear acceleration:

Circular Motion
Quantities, Units, and Equation

34

angular displacement: Δϕ = ϕ2 – ϕ1 [Δϕ] = rad
angular velocity, angular frequency: ω = Δϕ/Δt [ω] = rad/s
tangential velocity: v = r·Δϕ/Δt = r·ω [v] = m/s

centripetal acceleration: acp = v2/r = r·ω2 [a] = m/s2

r

r
v1

v2
v1

v2

Δϕ

Δϕ

Δv

Δs

(2) due to similarity:
Δv/v = Δs/r

(1) approximation in case of small angles:
displacement = arc length = v·Δt ≈ Δs

(1) + (2):
Δv/v = v·Δt/r

acp = v2/r

Perimeter & Area

35

a

b

rha

TRIANGLE
perimeter: a+b+c

area: a*ha/2

a

b

a

RECTANGLE
perimeter: 2*(a+b)

area: a*b

a

a

aa

SQUARE
perimeter: 4a
area: a*a=a2

a

b d
c

TRAPEZOID
perimeter: a+b+c+d

area: (a+c)/2*h

h

CIRCLE
perimeter: 2rπ

area: r2π

c
b

Surface & Volume

36

h

CYLINDER (open)

surface (wall only): 
2rπ*h

volume: r2π*h

SPHERE

surface: 
4r2π

volume: 4r3π/3

r

h r

PRISM (open)

surface (wall only): 
(perimeter of base)*h

volume: (area of base)*h
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Units – SI Base & Derived Units

physical quantity symbol unit symbol
length l, x, s, d meter m
mass m kilogram kg
time t second s
temperature T kelvin K
electric current I ampere A
amount of substance n, N, ν [nu] mole mol
luminous intensity Iv candela cd

physical quantity symbol unit symbol derivation
speed v, c – – m·s–1

acceleration a – – m·s–2

force F newton N kg·m·s–2

energy E joule J kg·m2·s–2

power P watt W kg·m2·s–3

intensity I – – kg·s–3

pressure p pascal Pa kg·m–1·s–2

The SI base units

Some SI derived units

38

Units – SI Prefixes
prefix symbol meaning etymology

exa E ×1018 = ×10006 Greek 6 (ἕξ = hex)

peta P ×1015 = ×10005 Greek 5 (πέντε = pente)

tera T ×1012 = ×10004 Greek 4 (τέτταρες = tettares), originally: monster (τέρας = teras)

giga G ×109 = ×10003 Greek giant (γίγας = gigas)

mega M ×106 = ×10002 Greek great (μέγας = megas)

kilo k ×103 = ×10001 Greek 1000 (χίλιοι = khilioi)

hekto h ×102 Greek 100 (ἑκατόν = hekaton)

deca da (dk) ×101 Greek 10 (δέκα = deka)

deci d ×10-1 Latin 10 (decem)

centi c ×10-2 Latin 100 (centum)

milli m ×10-3 = ×1000-1 Latin 1000 (mille, pl. milia)

micro µ ×10-6 = ×1000-2 Greek small (μικρός = mikros)

nano n ×10-9 = ×1000-3 Greek dwarf (νᾶνος = nanos)

pico p ×10-12 = ×1000-4 Spanish small, bit (pico)

femto f ×10-15 = ×1000-5 Danish 15 (femten)

atto a ×10-18 = ×1000-6 Danish 18 (atten)

39

Units – Conversion
from “with prefix” to “no prefix”:
15 km = 15 · 103 m
15 cg = 15 · 10–2 g

from “no prefix” to “with prefix”:
15 m = 15 / 103 km
15 g = 15 / 10–2 cg

from “with prefix” to “with prefix”:
15 km = 15 · 103 m = 15 · 103 / 10–2 cm

when the unit has an exponent:
15 km3 = 15 · (103 m)3 = 15 · (103)3 m3

15 m3 = 15 / (103)3 km3

liters to and from cubic meters:
1 m3 = 10 hL = 1000 L
1 dm3 = 1 L
1 cm3 = 1 mL
1 mm3 = 1 µL

time to seconds:
2 days 3 h 12 min 30 s = ((2·24+3)·60+12)·60+30 s

degrees, minutes of arc, seconds of arc:
45° 40ʹ 30ʺ = (45+40/60+30/602)°

degrees to and from radians:
1 rad = (360/2π)°
1° = (2π/360) rad

compound units:
15 kg/m3 = 15 · 103 / (1/(10–2)3) g/cm3

45 km/h = 45 · 103 / 3600 m/s

degrees Celsius to and from kelvins:
T = 15 °C = (15+273) K
T = 15 K = (15–273) °C
ΔT = 15 °C = 15 K
ΔT = 15 K = 15 °C


