Structure and dynamics of
biomolecular systems

mass spectrometry, IR spectrometry, X-ray diffraction, MD simulation

Erika Balog
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- analytical technique producing spectra of the masses of the atoms or molecules in a sample. The spectra are used to determine the
elemental or isotopic signature, thereby elucidating the chemical structures of molecules.
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lonization of biological samples

Electrospray ionization
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(1) decompositions to droplets,

(2) solvent evaporation - smaller droplet
-> greater surface charge,

(3) Coulomb repulsion = droplets explode -
ionized, accelerated molecules .

MALDI:

MALDI plate

“matrix-assisted laser desorption/ionization
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- the laser light is absorbed by the atoms/molecules of the matrix.

- used for investigating large molecules.
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Methods of mass analysis 1.
Magnetic method

m/q} = 46
m/q} =45
m/q} = 44

Deflection depends on
mass-to-charge ratio (m/q):
particles with smaller mass
are on path with smaller
radius.

lon source
- — N — = D
Frorentz = Q(E + v X B) Frorentz = centrip
E=electric field, vxB=vectorial product of speed and
magnetic induction 2
B mv
VDb = —
q r
mov
r = E E from which the mass-charge ratio (m/g) can be determined.

instead of m/q usually m/z is used, where z=g/e (dimensionless number).



Methods of mass analysis 2.
“Time-of-flight” method
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Applications of mass spectrometry

1. Protein analytics (proteomics)
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2. Diagnostic screening:

Metabolic diseases (from 1 drop of blood)

e.g., phenylketonuria (PKU)

3. Real-time tissue analysis (“onco-knife”)
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measures vibrations of molecules.

Vibration: periodic motion along the axis of the covalent bond
Rotation: periodic motion around the axis of the covalent bond

Examples of vibrational
motion in the triatomic
methylene group (-CH2-): .

Asymmetric stretching

Energy of a molecule: Born-Oppenheimer approximation

E  =E +E +E,

total
. Sl
Types of energy states are independent (not coupled).
Energy states are non-continuous, but discrete.
Transition between states involves packets (quanta) of energy.
Scales of transition energies between different states are different.
SO
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Symmetric stretching Scissoring
~100x ~100x
Scales of transition energies: Ee > EV > Er

~3x101%J (~2 eV) > ~3x1021J > ~3x10%3)
uwwvis > midIR > farlR



Molecular vibrations

Molecule: mass connected by a spring

¢ two-atomic molecule (e.g., CO) y

* masses (m1, m2): atomic nuclei B f= i D = A_E (see: Resonance lab)
(me<<mnucleus) 0 r'r“ > in mred h
e spring: covalent bond connecting distance of
the atoms nuclei
* distance-depedence of interaction . mmy
energy: can be approximated with a where: Mrea = m; +m,
parabola
* ry: equilibrium inter-nuclear N
distance )\NV\/W
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Fourier Transform Infrared
(FTIR) Spectroscopy:

e multiple wavelengths are generated
(with a Michaelson interferometer)
e Intensities at multiple wavelengths are

converted to wavelength-dependent
intensities.

IR spectrum:
e very rich information about molecular
structure and vibrational properties
e absorbance versus wavenumber
e transmittance versus wavenumber

IR spectroscopy - measurement
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Applications of IR spectroscopy

e |dentification of chemical species (e.g., intermediate and
end products of reactions)

e Determination and verification of molecular structure

e Detection of metabolites

¢ In proteins, both backbone (amide vibrations) and side
chain (ligand binding) behavior can be followed (e.g.,
denaturation, folding, aggregation)

¢ In nucleic acids, the bases, the sugar and phosphate
components can be studied independently

e In lipids, phase transitions (e.g., order-disorder) can be
followed

e N.B.: in agueous samples, due to water absorption, heavy
water (D20) is used instead.
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Foundations: wave diffraction and interference
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Molecular structure
dnaci: 5.64 A

~1A

Which kind of wave should be used for a molecular lattice? 0.01-10 nm
Ax-ray: 0.01-10 nm = 0.1-100 A

2d sind =kA —— d=... more difficult...

from the X-ray interference pattern:
spatial coordinates of atoms —— spatial structure of the molecule
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Solving molecular structure with x-ray crystallography

dsDNA Globular protein: Molec.ular complex:
myoglobin ribosome

1/h

g tilt of helix
h- 3.4 A distance between bases

p- 34 A repeat unit of helix (one pitch)

30S subunit: ~35000 atoms,
50S subunit:~64000 atoms

V. Ramakrishnan, T. A. Steitz, A. E. Yonath

J.D. Watson and F. Crick M. F. Perutz, J. C. Kendrew Nobel-prize 2009

Nobel-prize 1962 Nobel-prize 1962



X-ray crystallography: FTIR:

3D structure of the molecule — static image bond vibrations
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Molecular Dynamic (MD) simulations

calculates internal motions of the molecule



Aim:
- starting from experimental data to map the internal motion of macromolecules (to understand their function),
- to give atomic interpretation to experimental results.

Phosphoglycerate kinase (PGK)



RalF:

- effector of the virus causing legionella disease (sever pneumonia).

Experiment:
- inactive crystal structure,
- it gets activated by attaching to the membrane (aa denoted by orange).

But: proteins attached to the membranes can not be crystalized.
The structure of the active form can not be crystalized.

How does it work?

Simulation



complementarity of experiment and simulation



