Biomolecular structure.
 Diffraction, X-ray crystallography,
 light- and electron microscopy.
 CD spectroscopy, mass spectrometry

Physical properties of light (electromagnetic waves)
Intensity ~ $\mathrm{A}^{2}(\mathrm{E}, \mathrm{B})$ - wave property;
Phase - φ - wave property;
Frequency - f or v - wave property;
Energy of a single photon $\varepsilon=h \cdot f$ - particle property;
Propagation speed $-\mathrm{c}\left(\mathrm{c}_{\text {vacuum }} \sim 3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}\right.$. $)$

- refractive index: $n=\frac{c_{\text {vacuum }}}{c_{\text {medium }}}$ - how much is the light slower in a medium than in vacuum

Law of energy conservation: $\varepsilon_{\text {light }}=h \cdot f=h \cdot \frac{c_{\text {vacuum }}}{\lambda_{\text {vacuum }}}=h \cdot \frac{c_{\text {medium }}}{\lambda_{\text {medium }}}$

$$
n=\frac{c_{\text {vacuum }}}{c_{\text {medium }}}=\frac{\lambda_{\text {vacuum }}}{\lambda_{\text {medium }}}
$$

$n_{21}=\frac{c_{2}}{c_{1}}=\frac{\lambda_{2}}{\lambda_{1}}$ consequence: if $\mathrm{c}_{2}>\mathrm{c}_{1}$ then $\lambda_{2}>\lambda_{1}$;

Polarized light - observations

polarized
combined
ctenophore plankton. Almost transparent to normal vision (left), it acquires good contrast between crossed polarizers (center), and even better wit combined processing (right). $\xrightarrow{\text { combined processing (right). }}$ squid observed squid observed
in polarized light

The names given to the two major transverse striations The names given to the two major transverse striation
of skeletal and cardiac muscle are derived from the studies with routine light microscopic techniques;
Alternating dark and light bands are seen within striated Alternating dark and light bands are seen within striat
muscle fibers, Brücke* 1858). muscle fibers, Brücke* (1858).
dark band, which becomes bright, and the light band, which appears dark. (measured with crossed analysator and polarisator)
image with !!polarized light!!

crossed polarisator and analysator !

A.) Polarization due to reflection

B.) Birefringent crystal

In some crystals, substance $\mathrm{c}_{\mathrm{m}}=f$ (polarization plane)
this direction is faster, than the other,
for a ray of such a polarization plane
Optical birefringence: refractive index (\sim speed of light) depends on polarization plane of a linear polarized light

Fermat's principle: or the principle of least time is the principle that the path taken between two points by a ray of light is the path that can be traversed in the least time.

Circular polarized light (left, right)

circular birefringence: refractive index (\sim speed of light) depends on polarization sense of a circular polarized light

In some substances: $\mathrm{c}_{\mathrm{m}}=f$ (rotation sense of circular polarization; L/D)

Dichroism

1.) Certain wavelengths of light either pass through or are reflected from a material surface; (see pendant from dichroic glass - dichoric filters for material surface
microscopes)
2.) Refers to the phenomenon that light in different polarization states travelling through a material are absorbed by different amounts.

dichroic filters used e.g in fluorescence microscopes as beam splitters colors of reflected light
ad. 2.:

inear-, circular dichroism
linear - one of the plane polarized light is more absorbed than the other
circular - one of the circular polarized light (L/D) is more absorbed than the other (CD)
recall:
Dispersion: A physical quantity possesses frequency dependence.
CD dispersion or Optical Rotary Dispersion (ORD) - a method for resolving structural properties of molecules

Summary

$c_{m}=f(\nu$, polarization plane (v), polarization sense $(v))$
refractometry polarization microscopy, polarimetry, $C D$ (ORD)

Circular dichroism - a method for investigating biomolecular structures

Principle: wavelength dependent circular dichroism
\checkmark absorption of circular polarized light depends on polarization sense: left- or right
AND
\checkmark absorption of circular polarized light depends on frequency (wavelength) - dispersion

protein CD-spectra

CD-spectra of DNA

What is a CD-spectrum?

x-axis: wavelength or frequency (mostly wavelength)
y-axis: difference in molar extinction coefficients of the left-and right circular polarized lights (or a quantity proportional to this coefficient)

Types of secondary structures of

proteins:

α-helical
β-sheet
$\checkmark \beta$-turn
\checkmark random coil
Theory: a signal amplitude, at a given
wavelength, is a sum of all the possible structures
Tasks:

1. measure a spectrum for each distinct secondary structure;

- 2. combine these distinct spectra with appropriate weighting factors to get the observed one
Results:
relative contributions from each conformation $=$ weighting factors

Types of secondary structures of DNA:
A-DNA
B-DNA
Z-DNA

CD-spectra of DNA

What is diffraction?

Richard Feynman said that:
"no-one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them."

He suggested that when there are only a few sources, say two, we call it

 interference, (as in Young's slits), but with a large number of sources, the process be labeled diffraction.

Rayleigh Criterion : Two light sources must be separated by at least the diameter offfirst dark band.

elationship between minimum resolvable distance \boldsymbol{d} and wavelength λ; the central maximum $(\mathrm{m}=0$) does not contain information about the grating characteristics

Lower limit of usual optical resolution $\sim 200 \mathrm{~nm}$

What is a grating?

In most general meaning: a grating is a construction which consists of a periodically repeated physical property, creating a periodic structure.

physical property:
transparency (transmission amplitude gratings); reflectance (reflection amplitude gratings); refractive index (phase gratings);

degree of polarization

How to resolve structures (gratings) below 200 nm ?

carbon nanotube

ATP-binding cassette transporters (ABC-transporter)
different types of iron lattice

Decrease of wavelength? Method I.

$$
d_{\min } \approx \frac{m \cdot \lambda}{\sin \alpha}
$$

Whether the wavelength can be in pm range?

- X-ray - below optical region
- diffraction angle might be also small (<1 deg.)
- Image reconstruction is required
resolution on/below nm scale

Physical property of grating - reflection:
\checkmark electrondensity
\checkmark nuclei

constructive
destructive

Contrast enhancement
Possible sources of contrast: Absorption of electrons Absorption of electrons
Scattering of electrons

None of them is present in biological tissues
cattering of electrons
(Diffraction and phase contrast)
(Diffraction and phase contrast)

Mass spectrometry

